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Mutations in PVRL4, Encoding Cell Adhesion
Molecule Nectin-4, Cause Ectodermal
Dysplasia-Syndactyly Syndrome

Francesco Brancati,1,2,10,* Paola Fortugno,3,10 Irene Bottillo,2 Marc Lopez,4 Emmanuelle Josselin,4

Omar Boudghene-Stambouli,5 Emanuele Agolini,2 Laura Bernardini,2 Emanuele Bellacchio,2

Miriam Iannicelli,2 Alfredo Rossi,6 Amina Dib-Lachachi,5 Liborio Stuppia,1 Giandomenico Palka,1

Stefan Mundlos,7,8 Sigmar Stricker,7,8 Uwe Kornak,7,8 Giovanna Zambruno,3 and Bruno Dallapiccola9

Ectodermal dysplasias form a large disease family with more than 200 members. The combination of hair and tooth abnormalities,

alopecia, and cutaneous syndactyly is characteristic of ectodermal dysplasia-syndactyly syndrome (EDSS). We used a homozygosity

mapping approach to map the EDSS locus to 1q23 in a consanguineous Algerian family. By candidate gene analysis, we identified

a homozygousmutation in the PVRL4 gene that not only evoked an amino acid change but also led to exon skipping. In an Italian family

with two siblings affected by EDSS, we further detected a missense and a frameshift mutation. PVRL4 encodes for nectin-4, a cell

adhesion molecule mainly implicated in the formation of cadherin-based adherens junctions. We demonstrated high nectin-4

expression in hair follicle structures, as well as in the separating digits of murine embryos, the tissuesmainly affected by the EDSS pheno-

type. In patient keratinocytes, mutated nectin-4 lost its capability to bind nectin-1. Additionally, in discrete structures of the hair follicle,

we found alterations of the membrane localization of nectin-afadin and cadherin-catenin complexes, which are essential for adherens

junction formation, and we found reorganization of actin cytoskeleton. Together with cleft lip and/or palate ectodermal dysplasia

(CLPED1, or Zlotogora-Ogur syndrome) due to an impaired function of nectin-1, EDSS is the second known ‘‘nectinopathy’’ caused

by mutations in a nectin adhesion molecule.
Ectodermal structures, e.g., epidermis, hair, teeth, and

sebaceous glands, develop following complex interactions

between two adjacent tissue layers, the epithelium and the

mesenchyme. A number of signaling molecules, such as

fibroblast growth factors, Wnt, bone morphogenetic pro-

teins, and hedgehog, contribute to the fine regulation of

epithelial-mesenchymal crosstalk.1 Also, cell-cell adhesion

is crucial during epithelial development and morphogen-

esis.2 Adherens junctions (AJ), tight junctions (TJ), and

desmosomes form intercellular junctional complexes that

are structurally connected to the cytoskeleton and allow

single cells of an epithelial sheet to function as a coordi-

nated tissue.3 Identifying cell adhesion molecules (CAMs)

implicated in defective organogenesis may therefore shed

light on this complex developmental process.

Ectodermal dysplasias (EDs) are congenital disorders

characterized by alterations in two or more ectodermal

structures, at least one of these affecting hair, teeth, nails,

or sweat glands.4 Clinically, about 200 distinct EDs and

ED syndromes (combined with malformations) have

been described in the literature, and their number grows

constantly.5 A recent debate6 outlined the need for a func-

tional classification system for EDs that integrates both the
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clinical and molecular knowledge.7,8 However, no more

than one third of EDs described so far has been associated

to a causative gene, making its pathogenesis largely

unknown.9 Hence, identification of molecules underlying

EDs is mandatory, not only to improve diagnosis, prog-

nosis, and management but also to establish a more

appropriate classification system.

In this study, we investigated two unrelated families

displaying hair and teeth abnormalities associated with

hands and/or feet cutaneous syndactyly (ectodermal

dysplasia-syndactyly syndrome, EDSS) and identified the

disease-causing gene.

Family A was originally described by Boudghene-

Stambouli and Merad-Boudia10 and consisted of four

affected siblings born to first cousin, healthy Algerian

parents (Figure 1). In the second family (family B), two

siblings, born to nonconsanguineous healthy parents of

Italian origin, showed clinical features nearly identical to

those observed in family A (see Table S1 available online).

All affected individuals manifested partial cutaneous

syndactyly variably involving fingers 2-3 and 3-4 and toes

2-3 and 4-5 (Figure 1). In the young patients, hair over the

entire scalp was sparse and coarse, with a tendency to break
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Figure 1. Pedigrees and Clinical Manifestations of Two Families with EDSS
(A and B) Pedigree structure of families A and B. The probands are indicated by arrows, clear symbols represent unaffected individuals,
and filled symbols represent affected individuals.
(C) Patient IV:8, aged 25 years, shows diffuse alopecia of the scalp and absent eyebrows and eyelashes. Partial skin syndactyly of fingers
2-3 and toes 2-3 and 4-5 is present bilaterally.
(D–F) Hair shaft abnormalities in this patient observed at light microscopy (D) consist of peculiar repeated twists of the hair (pili torti),
whereas polarized microscopy (E) outlines high-frequency bands with consequent alteration of the normal banding pattern of the hair
shaft (magnification 403). Trichoschisis with transverse fracture is evident with polarized microscopy magnification 1003 (F).
(G and H) Family B, affected siblings aged 27 and 9 years. The older brother (G) shows alopecia, widely spaced teeth with conical crowns,
and partial cutaneous syndactyly of toes 2-3. Fingers 2-3 and 3-4 syndactyly has been surgically corrected. The proband (H) shows short
and coarse uncombable hair, sparse eyebrows and eyelashes, widely spaced irregular teeth, and syndactyly of fingers 2-3-4 and of toes
2-3 and 4-5.
since very early age.10 Eyebrows, eyelashes, and body hair

showed identical abnormalities. Progressive hair loss

manifested in the second decade of life with patchy areas

of alopecia over the scalp and progressed toward complete

alopecia, as observed in the oldest subject of family A,

aged 40 years. Hair morphological abnormalities included

twists at irregular intervals (pili torti) and swellings along

the shafts, particularly associated with areas of breakage

(Figure 1). Dental findings consisted of abnormally widely

spaced teeth, with peg-shaped and conical crowns

(Figure 1). All patients had normal sweating.

Biological specimens from affected and nonaffected

members of families A and B were collected after obtaining

informed consent from each individual. The study was

approved by the local ethics committees and was con-

ducted in accordance with international standards on

human research. To unravel the genetic defect of EDSS,

we performed a whole-genome homozygosity mapping

in four affected and three unaffected siblings of family A

with the Affymetrix Genome-Wide Human 6.0 SNP Array

(Affymetrix), in accordance with the manufacturer’s
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instructions. Homozygosity was assessed by visual inspec-

tion with the Genotyping Console 3.0.1 software and

allowed the definition of a 4.18 Mb continuous region of

homozygosity shared by the patients on chromosome

1q23.3 between SNPs rs11265404 at 158,686,947 bp and

rs16833478 at 162,874,726 bp (Figure S1), according to

National Center for Biotechnology Information (NCBI)

build 36.3. Six highly informative microsatellite markers

spanning this interval were then genotyped in all members

of family A and analyzed with GeneMapper V4.0 software

(Applied Biosystems). Manually constructed haplotypes

confirmed the cosegregation of the disease with the

1q23.3 locus (Figure S1). Two-point linkage analysis,

performed with the MLINK program, gave a maximum

LOD score of 3.08 at D1S484 (Table S2).

Among 60 annotated RefSeq genes, the PVRL4 gene was

of immediate note because the paralog PVRL1 was known

to be associated with cleft lip and/or palate ectodermal

dysplasia or Zlotogora-Ogur syndrome (CLPED1, MIM

225069).11 Notably, cutaneous syndactyly is also variably

observed in patients with CLPED1.12 The coding exons
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Figure 2. Mutations Identified in the PVRL4 Gene
(A) Schematic view of the human PVRL4 gene and
localization of identified mutations.
(B) Schematic representation of nectin-4 exhibiting
three extracellular Ig-like domains (blue) and a
transmembrane domain (red). The numbers denote
the amino acids located at the boundaries of each
domain.
(C) Amino acid sequence alignment showing con-
servation among species of the mutated Thr185
residue (*).
(D) Modeled structure of nectin-4 in the amino acid
range 147–244 encompassing the second Ig-like
domain. Site of mutation Thr185 (green cloud) and
its interacting amino acids Val187 and Leu221
(blue clouds) are shown.
and intron-exon junctions of the PVRL4 gene were thus

amplified (primer pairs are available in Table S3),

sequenced with the BigDye Terminator v3.1 Sequencing

Kit (Applied Biosystems), and run on an ABI 3130XL

DNA Analyzer. A single homozygous G-to-A substitution

in exon 4 (c.851G>A leading to p.Arg284Gln) was identi-

fied in patient IV:8 from family A. This mutation was trans-

mitted from heterozygous parents to all four homozygous

patients, and carrier status was demonstrated in three

healthy siblings according to haplotype reconstruction

(Figure S1 and Figure S2). The mutation was neither found

among 250 DNA samples from various geographical

regions (including 70 Algerian samples) nor listed as

a SNP in public databases.

To confirm the involvement of PVRL4 in EDSS, we tested

family B for mutations and identified two distinct alter-

ations in the two affected family members. Both patients

were compound heterozygotes for a maternally inherited

nucleotide substitution in exon 3 (c.554C>T) leading to

p.Thr185Met and a paternally transmitted c.906delT dele-

tion in exon 5, which resulted in a frameshift with prema-

ture termination (p.Pro304HisfsX2). Both mutations were

absent in a panel of 180 ethnically matched control DNA

samples. The mutated Thr185 residue is located in the

second Ig-like domain of nectin-4 and is highly conserved

among species (Figure 2). Modeling of this domain struc-

ture indicated that Thr185 contributes to the formation

of a loop between two beta strands and makes contact

with Val187 and Leu221 (Figure 2; Figure S3). The replace-

ment of the threonine with the larger methionine residue

is predicted to modify these contacts, altering the structure

and possibly affecting the interactions with other Ig-like-

containing proteins.

In order to assess the pathogenic effect of the c.851G>A

(p.Arg284Gln) mutation found in family A, we reasoned

that, because the nucleotide change affected the last base

of exon 4, a role of this mutation on splicing could be

envisaged. In fact, several examples of exonic point muta-
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tions affecting splicing have been reported in the litera-

ture.13 In addition, the Arg284Gln substitution was rated

as benign by the PolyPhen and SIFT softwares.14

Conversely, the NetGene2,15 SplicePort,16 and HSF17

prediction tools gave a significantly decreased score for

the exon 4 donor splice site, arguing for a possible role in

mRNA splicing. To test this hypothesis, we analyzed

PVRL4 mRNA products in the skin of patient IV:8 from

family A. Amplification of PVRL4 cDNA with primer pairs

flanking exon 4 (primers and conditions are listed in Table

S3) resulted in abnormal splice products in the patient

compared to an unrelated control sample (Figure S4).

Direct sequencing of the most abundant of these tran-

scripts confirmed the skipping of exon 4 at the RNA level

(Figure S4) with formation of a premature stop codon in

this transcript (p.Phe244CysfsX22). The protein resulting

from this transcript lacks both its transmembrane and C-

terminal afadin-binding consensus motif, making very

likely the loss of nectin-4 function.

To understand the potential function of nectin-4 in

human tissues, we analyzed mRNA expression in a com-

mercially available human RNA panel (Clontech) and

found that it was restricted to placenta, trachea, prostate,

lung, and stomach (Figure S5). Because skin and hair

were the most severely affected targets of EDSS, we also

tested nectin-4 expression by real-time PCR in skin biop-

sies, plucked hair bulbs, cultured fibroblasts, and cultured

epidermal keratinocytes at different stages of differentia-

tion. Total RNA was isolated via a standard TRIzol reagent

extraction method.18 Nectin-4 was significantly expressed

in skin, hair follicles, and cultured keratinocytes, but not in

fibroblasts (Figure 3). Steady-state levels of nectin-4 mRNA

from cultured epidermal keratinocytes of patient II:1

(family B) revealed nearly 50% reduced expression (Fig-

ure 3), indicating that nonsense mRNA decay is secondary

to the frameshift mutation.

Immunohistochemical analysis of normal human skin

sections detected nectin-4 at cell-cell junctions of human
an Journal of Human Genetics 87, 265–273, August 13, 2010 267



Figure 3. Nectin-4 mRNA Expression in Specimens from
Unaffected Individual and EDSS Patient
(A) Relative PVRL4 mRNA expression, as determined by quantita-
tive PCR in skin biopsy, plucked hair bulbs, primary fibroblasts,
and proliferating (Kt0) and differentiated (Kt1, Kt3, Kt5) keratino-
cytes obtained from healthy donors. Keratinocyte differentiation
was induced by the addition of 1.2 mM calcium to the culture
media for 1 (t1), 3 (t3), or 5 (t5) days. PVRL4 is expressed
in skin, keratinocytes, and mainly in hair bulbs, but not in
fibroblasts. Expression level increases during keratinocyte differ-
entiation.
(B) Analysis of PVRL4 expression in primary keratinocytes at
different stages (Kt0–Kt5) from family B patient II:1 (black
column) and from a control individual (gray column). Note the
strongly reduced expression in the patient’s samples. Experiments
were run in duplicate. Error bars are 5 standard deviation. The
relative expression values were determined via the DDCt method.
keratinocytes. In particular, we observed a positive staining

in all the suprabasal nucleated layers of epidermis (from

the spinous to the granular layer) and in all the nonkerati-

nized structures of hair with a stronger signal within inner

root sheath layers and hair shaft cortex. With increasing

keratinization, the expression became lower (Figure 4).

Notably, nectin-4 staining was markedly reduced in the

interfollicular epidermis from patient II:1 (family B), and

only a residual signal was visualized in the hair follicles

(Figure 4).

Because nectins promote AJ formation through the

nectin-afadin and cadherin-catenin complexes,19 we

examined the localization of other AJ components and

actin cytoskeleton in the patient’s skin biopsy. Compared

to normal human skin, cell membrane staining of a-cate-

nin, b-catenin, E-cadherin, and afadin appeared highly

disorganized. Also, F-actin showed an altered distribution,

with loss of pericellular localization (Figure 5; Figure S6).

Notably, such alterations were restricted to discrete areas

of the hair follicle composing the outer root sheath,

whereas no staining differences were appreciable in the
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interfollicular epidermis and other hair compartments

analyzed (Figure S6). Based on previous evidences demon-

strating that nectin-4 forms hetero trans-dimers with

nectin-1 (encoded by the PVRL1 gene),20 we investigated

whether this binding activity was altered in cells from

family B patient II:1. Fluorescence-activated cell sorting

(FACS) analysis showed, in addition to a highly decreased

cell surface expression of nectin-4, a nearly abolished nec-

tin-1 to nectin-4 binding in the patient’s keratinocytes

(Figure 5).

Cutaneous syndactyly was a consistent finding in

our patients. Therefore, we assessed by real-time PCR

nectin-4 mRNA expression during different stages of limb

development in the mouse embryo. Nectin-4 was not

significantly expressed until stage E14.5; it reached

maximum expression at E16.5 and decreased at later stages

(Figure 6). Whole-mount in situ hybridization was per-

formed as previously described,21 with a probe specific

for murine Pvrl4 generated by PCR (Table S3). Strikingly,

this confirmed an interdigital nectin-4 expression at

embryonic stage E15.5 (Figure 6). In addition, a strong

expression at the roots of vibrissae was observed starting

from E13.5 (Figure S7).

Nectins (from the Latin word necto, meaning ‘‘to

connect’’)22 are calcium-independent immunoglobulin

(Ig)-like CAMs functioning in cell-cell junctions in cooper-

ation with or independently of cadherins (reviewed in 23).

Four distinct nectins (nectin-1 to nectin-4) are known and

contribute to cell adhesion through both homophilic and

heterophilic cis and trans interactions mediated by their

extracellular Ig-like domains.24 Nectins are connected to

the actin cytoskeleton through afadin, an F-actin-binding

protein,22 and, in a complex interplay with other CAMs

and signal transduction molecules, they regulate several

cellular activities, ranging frommovement to polarization,

differentiation, and entry of viruses.25

So far, only nectin-1 has been linked to human heredi-

tary disorders. Mutations in PVRL1, the nectin-1-encoding

gene, cause cleft lip and/or palate ectodermal dysplasia or

Zlotogora-Ogur syndrome (CLPED1, MIM 225069) and

nonsyndromic orofacial cleft (OFC7).11,26 There are simi-

larities between the nectin-4 expression pattern we

observed and that reported for nectin-1. In particular, in

mouse embryos, nectin-1 was expressed from E8.5 to

E16.5 and decreased after E18.5, with staining at E15 in

various ectodermal tissues, including skin, tooth, and

hair.27 Detailed mouse embryo and adult human skin

immunohistochemistry studies further showed positive

nectin-1 expression in the epidermis, mainly in the

spinous layer.28 Notably, a trans-heterophilic interaction

between nectin-1 and nectin-4 was previously demon-

strated,20 further supporting a common mode of action

of thesemolecules in regulating ectodermal organogenesis.

The impairment of the binding of the EDSS patient’s kera-

tinocytes to nectin-1-Fc that we observed further corrobo-

rates this hypothesis. Indeed, clinically, CLPED1 and EDSS

show several overlapping features, e.g., alopecia, abnormal
3, 2010



Figure 4. Localization of Nectin-4 in Human Skin and Hair
(A–F) Frozen sections of human skin containing terminal hair obtained from healthy donors were stained with the mouse anti-nectin-4
monoclonal antibody (N4.61), as previously described.42 In the hair follicle (A–D), a pericellular signal is first detected at the level of the
hair bulb in suprabasal matrix epithelial cells (M), giving rise to the different specialized hair follicle compartments. The hair shaft cortex
and cuticle (HSC and HSCu) (D), as well as all the inner root sheath (IRS) layers (i.e., Henle’s [He], Huxley’s [Hu], and cuticle [IRSCu])
(C and D) appear strongly positive until the onset of keratinization, which occurs at first in the Henle’s layer, then in the IRS and
hair shaft cuticle, and finally in the Huxley’s layer and hair shaft cortex (A, C, and D). A less intense staining is present in all suprabasal
layers of the outer root sheath (ORS) (A–D). The epidermis is also stained, and the signal intensity shows an increasing gradient from the
first suprabasal to the granular layer; the signal disappears at the transition zone between the granular layer and stratum corneum
(E and F).
(G–J) Nectin-4 staining is strongly reduced in the epidermis of family B patient II:1 (G and H) and in his hair follicles (I and J).
(K) Nonspecific labeling is observed to be limited to the sebaceous glands with the secondary biotin-conjugated antibody alone.
Scale bars represent 100 mm (A, D, and I–K), 25 mm (B and C), and 50 mm (E–H).
teeth, and syndactyly, although cleft lip and/or palate

appears to be characteristic of CLPED1.12 The spatiotem-

poral expression of other nectins (i.e., nectin-2 and nec-

tin-3) has been extensively investigated in the mouse

embryo. Interestingly, in addition to nectin-1, nectin-2

was also expressed in the hair matrix, whereas nectin-3

was nearly absent in the epidermis and vibrissae. These

data also indicate that nectins are differentially expressed

during embryonic development, thus suggesting a role in

the morphogenesis of distinct epithelial tissues.27

The combination of defective hair morphogenesis and

limb abnormalities has been previously reported in human

disorders determined by defective CAMs. An interesting

example is CDH3, a gene encoding P-cadherin, in which

biallelic mutations cause hypotrichosis with juvenile

macular dystrophy (HJMD, MIM 601553) and ectodermal

dysplasia, ectrodactyly, and macular dystrophy (EEM,

MIM 225280).29,30 It is noteworthy that the hair abnor-

malities we observed in EDSS patients (i.e., pili torti and

alopecia) are almost identical to those reported in HJMD

patients.29 Of further interest, recent evidence suggests

that P-cadherin is a transcriptional target of p63, with a

crucial role in hair follicle development and limb bud

outgrowth.31 Indeed, TP63 mutations cause human devel-

opmental disorders that are characterized by various
The Americ
degrees of ectodermal dysplasia, limb abnormalities, and

facial clefts.32 Nectins cooperate with cadherins at AJ

binding to the actin cytoskeleton after the recruitment of

the E-cadherin-b-catenin complex.3,33 Our data showed

that an impairment of nectin-4 not only alters the

nectin-afadin complex but also affects the classical cad-

herin-catenin unit, which is crucial for AJ formation.19 It

is noteworthy that, although these effects were evident

in the outer root sheath of the hair follicle, no gross

morphological abnormalities were seen within the

epidermis, suggesting a critical role for nectin-4 in hair

morphogenesis and cycling. Although further studies are

warranted to elucidate the function of nectin-4 in ecto-

dermal derivatives and limb bud development, it is

tempting to speculate that this molecule participates in

reciprocal and sequential interactions between epithelium

andmesenchyme for tissue formation andmorphogenesis,

as seen for other CAMs such as cadherins.34

Cutaneous syndactyly results from an impairment of

apoptotic cell death in the tissue lying between the devel-

oping digits.35 Different signaling pathways are involved

in the regulation of cell death in the interdigital tissue.36

Best documented is the role of the bone morphogenetic

proteins (BMPs) family in inducing cell death in the inter-

digital mesenchyme by its downstream targets Msx1 and
an Journal of Human Genetics 87, 265–273, August 13, 2010 269



Figure 5. Tissue and Cellular Consequences of Nectin-4 Alteration
(A) Frozen sections of human skin with terminal hair obtained from an unaffected individual and family B patient II:1 were immuno-
stained with the AJ marker a-catenin (clone 7A4, Invitrogen). Higher-magnification images of the boxed regions are shown. In the
control sample, a-catenin preferentially stains along cell-cell adhesion sites in all nonkeratinized structures of the hair. In the patient,
although a similar staining is observed along the cell-cell junctions at the IRS level, its distribution is altered in the ORS. Scale bars repre-
sent 50 mm.
(B) Nectin-4 and F-actin were stained in serial sections of human skin from an unaffected individual and family B patient II:1 with anti-
nectin-4 mAb (N4.61) or rhodamine-phalloidin (Invitrogen), respectively. Although strong reduction of nectin-4 expression does not
seem to affect the cellular architecture at the interfollicular epidermis level (top), the actin cytoskeleton is strongly disorganized in
the hair follicle (bottom). Scale bars represent 25 mm.
(C) FACS analysis on dissociated keratinocytes showing a decrease of cell surface expression of nectin-4 in family B patient II:1 (red)
compared to a control sample (blue). The relative histogram documents the strong reduction of expression (relative to IgG1) between
mean values of three unaffected control samples (U, light gray) and the patient (Pt, dark gray). Cells were incubated with a mouse
IgG1 anti-nectin-4 IgV domain monoclonal antibody (N4.61)42 or an irrelevant mouse IgG1 monoclonal antibody (5 mg/ml). After
washes, cells were incubated with a phycoerythrin-labeled goat anti-mouse secondary antibody (Immunotech) (1/100). Incubation
conditions were 60 min at þ4�C.
(D) Immunoblot analysis of nectin-4, performed with monoclonal antibody (BAF2659; R&D Systems) on protein extracts of differenti-
ated primary keratinocytes from an unaffected individual and family B patient II:1, confirming strong reduction of protein expression.
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Figure 6. Nectin-4 Expression during Mouse Limb
Development
(A) Relative Pvrl4 mRNA expression in whole-limb
mRNA at different embryonic stages determined by
quantitative PCR. Three to five limbs were pooled
for mRNA isolation. The relative expression values
were determined via the DDCt method. Experiments
were run in duplicate. Error bars are 5 standard
deviation.
(B) Whole-mount in situ hybridization for Pvrl4
mRNA expression in E15.5 mouse limb denotes
strong expression in areas where digit separation is
ongoing.
Msx2. Interestingly, inactivation of Rac in the interdigital

mesenchyme evoked defective BMP signaling and cuta-

neous syndactyly.37 Like the nectin-4 interaction partner

afadin, Rac has amodifying function for the actin cytoskel-

eton. Moreover, the interaction with cadherins also

implies an influence of nectin-4 on Wnt signaling, which

plays a relevant role in limb development. Dkk1-mediated

inhibition ofWnt signaling was shown to be important for

digit separation in chicken and mouse.38 In addition,

mutations in the SOST gene, encoding the Wnt antagonist

sclerostin, also cause cutaneous syndactyly.39 However,

interdigital cell death is most prominent in the mouse

limbs between E12.5 and E14.5,40 thus before nectin-4 is

strongly expressed, indicating that other mechanisms

beyond apoptosis might be involved.

A growing number of CAMs are being implicated in the

pathogenesis of ED syndromes. In addition to nectin-1 and

P-cadherin defects, leading to CLPED1 and HJMD/EEM

syndromes, respectively,11,29,30 mutations in PKP1 gene

encoding the desmosomal protein plakophilin-1 cause

ED/skin fragility syndrome (MIM 604536).41 The identifi-

cation of nectin-4 in the pathogenesis of EDSS strengthens

the role of defective CAMs in a discrete group of syndromic

EDs and warrants the investigation of this class of

molecules in other, molecularly uncharacterized, disorders

of ectodermal derivates.
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